COUDCE	THEODMATON
COURSE	INFORMATON
OCOLOL	ATTE VILLING OF

Course Title	Code	Semester	L+P Hour	Credits	ECTS
MODELING AND ANALYSIS OF CHEMICAL ENGINEERING SYSTEMS	CHBE 512	1-2	2 + 2	3	10

Prerequisites	NONE
Language of Instruction	English
Course Level	Ph. D. Degree (Third Cycle Programmes)
Course Type	Compulsory
Course Coordinator	
Instructors	Assoc. Prof. Betül Ünlüsü
Assistants	
Goals	The aim of this course is to provide students with the ability to model chemical engineering systems and solve model equations using analytical and numerical techniques.
	Medaling and mathematical formulation of lumned nerror and

ContentModeling and mathematical formulation of lumped-parameter and
distributed-parameter systems encountered in chemical engineering.
Analytical and numerical methods used in the solution of ordinary and
partial differential equations.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Gains the ability to derive models for chemical engineering systems in a hierarchy of levels from the simplest to the most complex using the fundamental laws of physics	1	1,2	A,C
2) Acquires the ability to solve ordinary and partial differential model equations using analytical and numerical techniques	1	1,2	A,C
3) Gains the ability to communicate effectively in English	8	1,2	A,C

Teaching	1. Locture 2. Question Answer 2. Lab 4. Case study
Methods:	1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study

Assessment Methods:

	COURSE CONTENT				
Week	Topics	Study Materials			
1	MODELING OF CHEMICAL ENGINEERING SYSTEMS (MASS, MOMENTUM AND ENERGY CONSERVATION EQUATIONS)	Textbook			
2	MODELING OF CHEMICAL ENGINEERING SYSTEMS (MASS, MOMENTUM AND ENERGY CONSERVATION EQUATIONS)	Textbook			
3	ANALYTICAL SOLUTION METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS (FIRST ORDER LINEAR AND NONLINEAR EQUATIONS)	Textbook			
4	ANALYTICAL SOLUTION METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS (SECOND ORDER LINEAR AND NONLINEAR EQUATIONS)	Textbook			
5	ANALYTICAL SOLUTION METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS (METHOD OF FROBENIUS)	Textbook			
6	ANALYTICAL SOLUTION METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS (BESSEL'S EQUATION)	Textbook			
7	MIDTERM EXAM I	Textbook			
8	ANALYTICAL SOLUTION METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS (METHOD OF COMBINATION OF VARIABLES)	Textbook			
9	ANALYTICAL SOLUTION METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS (METHOD OF SEPARATION OF VARIABLES)	Textbook			
10	ANALYTICAL SOLUTION METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS (METHOD OF LAPLACE TRANSFORMATION)	Textbook			
11	ANALYTICAL SOLUTION METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS (METHOD OF LAPLACE TRANSFORMATION)	Textbook			
12	NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS	Textbook			
13	NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS	Textbook			
14	MIDTERM EXAM II	Textbook			

RECOMMENDED SOURCES		
Textbook	RICE, R. G., DO, D. D., APPLIED MATHEMATICS AND MODELING FOR CHEMICAL ENGINEERS, 2nd ED., WILEY, 2012	
Additional Resources		

MATERIAL SHARING		
Documents		
Assignments		
Exams		

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	63		
Assignment	6	37		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60		
Total		100		

	COURSE'S CONTRIBUTION TO PROGRAM				
No	Program Learning Outcomes	Co			tion 1 5
1	Understand and apply fundamental sciences, mathematics and engineering sciences at high level.				+

2	Have a wide and deep knowledge in his/her field including the latest progresses.	
3	Reach the latest knowledge in the field and through its comprehension possess high level competence in required methods and skills for doing research.	
4	Ability to do an extensive study which brings novelty to science and technology, develop a new scientific method or technological product/process, or apply a known method to a new field.	
5	Understand a genuine research process independently, design, apply and carry through; manage this process.	
6	Contribute to science and technology literature by publishing the outcomes of his/her academic studies in prestigious media.	
7	Able to do critical analysis, synthesis and evaluation of ideas and progresses in his/her specialization.	
8	Able to communicate and discuss at high level orally, written and visually by using a language at least at the level of European Language Portfolio B2 orally and written.	+
9	Able to communicate with persons in his/her career and widely with scientific and social ensemble orally and writtten.	
10	Able to evaluate scientific, technological, social and cultural developments and transfer them to society with senses of scientific disinterest and ethical responsibility.	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration (Including the exam week: 16x Total course hours)	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	10	140
Mid-terms	2	4	8
Ödev	6	8	48
Final examination	1	5	5
Total Work Load			243
Total Work Load / 25 (h)			9.72
ECTS Credit of the Course			10